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The multivariate master equation for a general reaction-diffusion system is 
solved perturbatively in the stationary state, in a range of parameters in which a 
symmetry-breaking bifurcation and a Hopf bifurcation occur simultaneously. 
The stochastic potential U is, in general, not analytic. However, in the vicinity of 
the bifurcation point and under precise conditions on the kinetic constants, it is 
possible to define a fourth-order expansion of U around the bifurcating fixed 
point. Under these conditions, the domains of existence of different attractors, 
including spatiotemporal structures as well as the spatial correlations of the 
fluctuations around these attractors, are determined analytically. The role of 
fluctuations in the existence and stability of the various patterns is pointed out. 

KEY WORDS: Multivariate master equation; reaction-diffusion system; 
codimension-two bifurcation; nonanalytic potential; spatiotemporal structure; 
fluctuations; spatial correlations. 

1. I N T R O D U C T I O N  

The description of non-equ i l ib r ium systems near  bifurcat ion points  has 
been considerably developed in the last years. F r o m  a determinist ic  point  
of view, local bifurcat ions may be studied analytical ly through the use of 
the no rma l  form (1) of the differential equat ions  expanded a round  a fixed 

point.  Bifurcation cascades, which usually give rise to global phenomena ,  
are also frequently amenable  to local analysis by br inging the system to the 

vicinity of a degenerate s i tua t ion thanks  to the control  of a sufficient num-  

ber of parameters.  Among  such high codimension bifurcations, the case in 
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which the linearization of the equations around a fixed point gives rise to a 
simple zero eigenvalue and a simple pair of pure imaginary eigenvalues has 
been investigated extensively. (2-4) Depending on the parameter values, a 
wide range of behaviors is observed. So far, the analysis of this codimen- 
sion two bifurcation has been limited to abstract dynamical systems or to 
physical systems of small size. (2'4) In both cases, by virtue of the center 
manifold theorem, it is guaranteed that the evolution can be restricted to a 
three-dimensional manifold in which the critical variables obey a set of 
coupled ordinary nonlinear differential equations. Notice that the existence 
of universal unfoldings around criticality remains an open question. 

In the present paper, attention is focussed on a general class of reac- 
tion-diffusion systems of large spatial extension operating in the vicinity of 
a local codimension two bifurcation of the type mentioned above. 
Specifically, it is assumed that for a critical set of parameter values 2o, #o 
the spectrum of the linear stability operator is quasi-continuous and 
behaves in the way depicted in Fig. 1. It is expected that for slight 
deviations of 2, kt from these critical values, a symmetry-breaking bifur- 
cation will interact with a Hopf bifurcation, giving rise to interesting 
dynamical phenomena. We show how the center-manifold theory extends 
in this case and obtain the normal form of the equations for the critical 
variables. The latter are expected to define a three-component vector whose 
components are fields obeying coupled nonlinear partial differential 
equations. Actually, we shall deal with the discretized form of these 
equations obtained by dividing the physical space into cells of sub- 
macroscopic size. 

I 
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Fig. 1. Linear stability diagram associated with the degenerescence of a symmetry-breaking 
bifurcation [rOsB(m)= 0] and a Hopf bifurcation [Re ~oH(m)= 0]. For/~ =/~0, the bifurcation 
parameter 2 is plotted against wave number m. 
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The main objective of the present work is however to carry out a 
stochastic analysis of this kind of bifurcation and find the probabilistic 
analogue of the center manifold and normal forms theory. Rather than 
start with the deterministic laws of evolution and add random (Langevin) 
forces, we prefer to adopt the master equation description, (11) in which fluc- 
tuations arise as natural consequences of the very dynamics of the system. 
We shall model chemical reactions as birth-and-death processes and dif- 
fusion as a random walk. Our purpose will be to find asymptotic (long- 
time) solutions for the multivariate probability distribution. We recall 
that for simple (nondegenerate) symmetry-breaking bifurcations (5-7~ and 
Hopf bifurcations (8<~ this program has been carried out using both 
Langevin (5'8'91 and master equation (6'7"~~ descriptions. 

The main thrust of our method is to seek for asymptotic expressions of 
the cologarithm of the probability distribution U, hereafter referred to as 
stochastic potential. (12) In previous analyses dealing with simple bifur- 
cations, adequate expressions were obtained by expanding U in Taylor 
series around the (unstable) fixed point and truncating to fourth-order 
terms. However, this procedure breaks down in the case of degenerate 
bifurcations, unless specific conditions are imposed on the coefficients of 
the master equation. The existence of a smooth potential in these more 
complex situations is a question of interest for several authors/~3'14) who 
analyze this problem in a different context and for systems with finite 
degrees of freedom. More explicitly, the. general problem of the existence of 
polynomial expansions of the stochastic potential has been recently 
analysed in detail by Descalzi and Tirapegui (2~ in a context similar to our 
own previous short work. ~s) 

We explore here the dynamical behavior of the system under the 
conditions of existence of a quartic potential, and compute the spatial 
correlations of the fluctuations around the possible attractors. We show 
that in low-dimensional systems, long-range order cannot be sustained. It is 
thus expected that for such systems fluctuations will destroy the attractors 
predicted by the deterministic analysis. 

The paper is organized as follows: in Section 2, we recall briefly the 
main principles of the perturbation method used to solve the master 
equation. The conditions of existence of an analytic stochastic potential 
are determined in the case of the eodimension two bifurcation of interest. 
Section 3 is devoted to the search of the bifurcating attractors as extrema of 
the potential. Finally, we estimate in Section 4 the spatial correlations of 
the fluctuations around these attractors. 
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2. SEARCH OF THE S T O C H A S T I C  POTENTIAL A S S O C I A T E D  
W I T H  A C O D I M E N S I O N - T W O  B I F U R C A T I O N  

The perturbation method used to solve the multivariate master 
equation associated with a general reaction-diffusion system has been 
introduced by Kubo et al. (~vl and developed further by Lemarchand and 
Nicolis. (6'7) We summarize here the main steps of the procedure leading to 
a Taylor expansion of the stationary stochastic potential around a fixed 
point. 

2.1. Main  Principles of the Per turbat ion M e t h o d  

The reaction-diffusion model consists of a set of chemically active con- 
stituents in a volume • in a d-dimensional space. This space is divided into 
n submacroscopic cells. The numbers of cells along each axis are denoted 
by nl ,  n2 . . . . .  na such that n I • n2 x ... x na = n. A vector r = (r l ,  r2,..., ra), 
with integer components locates a given cell. The number of particles of 
species c~ in a cell r will be denoted X,~. The kinetic characteristics of the 
chemical reactions are the following. 

~p~ is the order of the pth reaction with respect to X~. 
vp~ is the stoichiometric coefficient of X~ in the p th  reaction (vp~>0 

for particles formed as a result of the reaction and vp~ < 0 for particles 
disappearing as a result of the reaction). 

kp is the normalized kinetic constant of the p th reaction, including 
externally controlled concentrations. 

Each constituent X~ may diffuse between two adjacent cells with a 
jump frequency D~ depending on the length AI of the cell and related to 
Fick's coefficient ~ through ~---D~(Al)  2. 

The usual stochastic description (H) of chemical reactions as birth-and- 
death processes and of diffusion as a random walk between adjacent cells 
leads to the multivariate master equation for the probability distribution 

% -  

+ ~ D ~ ( ( X , ~ + I ) P ( X r = + I , X ( r + , ) = - I ) - X r = P )  (2.1) 
c~ r ~  

where a denotes the first neighbors of cell r. Only the arguments of P which 
differ from {X~} are explicitly indicated. 
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Introducing N, the mean number of particles in a cell, as an expansion 
parameter, we assume that the probability distribution has the asymptotic 
form 

P({Xr~}, t)=C(N)exp{-nN[U({x,~}, t)+O(1/N)]} (2.2) 

where C(N) is a normalization constant and where the stochastic potential 
U is defined as a continuous function of the reduced variables Xr= = X~JN. 

Substituting Eq. (2.2) into Eq. (2.1) and expanding in terms of 1/N, we 
obtain to zeroth order a Hamilton-Jacobi type of equation, 

----~=H({xj}, {UJ})=~ m({xr= }, {ur=})-t-ndiff({xj}, {UJ}) 
r 

(2.3) 

The "Hamiltonian" H is a function of the variables xj (we use here the 
contracted notation j = re) and of their "conjugate momenta" U j = ~?U/Ox]. 
It can be expressed as a sum of a term associated with diffusion processes 

{ I ~ HdiU({Xj}, {UJ})=~D~Xr~ exp -- 
cr r l l  

and terms such as M({xr~ }, { Urn}) associated with the chemical reactions 
in a cell r. The function m({x~}, {U~})itself is space independent and 
it coincides with the Hamiltonian of a purely chemical system without 
diffusion. It is given by 

The derivatives of H (respectively M) with respect to xj, xj .... (respectively 
x~, x~,...) and U/', Uf,... (respectively U ~', U~",...), evaluated for U J = 0  
(respectively U~=0) will be denoted by HjJ, i);:,...({xj}) [respectively 

~cr m~,w,, ({x~})]. It can be shown ~6'v) that Hi, Hjj,... are the first, second,... 
moments of the transition probability. Specifically,//1. is the vector field of 
the deterministic equations. Drawing a parallel between a local deter- 
ministic analysis beginning with an expansion of the differential equations 
around a fixed point (i.e., Hj = 0) and our stochastic approach, we seek a 
stationary solution of Eq. (2.3) in the form of a Taylor expansion around 
an extremum )?j(t) of U (i.e., ~,U/?xj = 0). It is possible to show (6"7) that the 
extrema of U obey the deterministic equations 

ds Hj({ffj}) (2.4) 
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Choosing then to expand U around an extremum ~r , ( t )=  s which is a 
stationary homogeneous state of the deterministic equations yields 

1 1 
U oi~ai~+-~. U ol~al~at3+ " .  (2.5) U = "~ 1112 ll/213 

where the indices with numerical exponents such as l 1 are implicitly 
summed over and where at are the new coordinates in the representation 
of the eigenvectors C ~ of the linear stability operator H f  at the reference 
state ~ :  

xs - s = C~ ~ Jl~ (2.6) 

For  periodic boundary conditions, suitable for the description of large 
systems, the components C~ = C,~ a of the eigenvector C t associated with the 
eigenvalue COm~ satisfy 

CJ-~- ( C m ) ~ e  irm ( 2 . 7 )  

where m = 2 n ( m l / n l ,  m j n 2  ..... md/nd) with m i ~  plays the role of a 
Fourier variable and where (c.,)~ obeys (6"7) 

[ M ~ ~ - K i n d  ~ ~) ( o~ - -  ~ l ) ] ( C m ) ~ f l  1 = (L)il lf l(Cm)~ fl (2.8) 

with 

d 

K m = ~ 4 sin 2 nmi/n i (2.9) 
i = l  

As the number n of cells (size of the system) is large, the eigenvalue 
spectrum is dense and so is the set of Km. It should be noted here that in 
the limit of a continuous space description (Al--+ 0, where Al is the cell's 
side length), the wave vectors p are defined as m / A l - + p  and it can be 
shown that K,, /(AI)  2 --+ p2. 

In the representation at, the successive derivatives of U have the 
following expressions~6'7): 

O i l '  
U,~-, j = (2.10) 

o )  l -+- o9 r 

Ultl U t,z2 U t ,,t3 
UII'I " F 6P (Lrlal5Tr--1 U~I3 + 11 lll 2 Wl413 ) = LeJll121311111 I.Jl412 LII4 r r - X ~ + H t l t 2 1 3  ] (2.11) 

CO/~ -k- (0/2 + ~z3 

The symmetrization symbol ~r... applied to a function of the indices ll'... 
represents the sum of all distinct terms obtained by permutation of these 
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indices. These exact expressions have already been evaluated in the vicinity 
of a codimension-one bifurcation leading either to spatial structures (6'7) or 
to temporal oscillations. ~m) The question is: does the same method apply to 
a codimension-two bifurcation, leading in particular to spatiotemporal 
structures ? 

2.2. Critical Eigenvalues. Quasiresonances 

The system of interest is a general reaction-diffusion system of two 
chemical components and of large size. It depends at least on two 
parameters t/c and t/o such that there exist conditions for which a sym- 
metry-breaking bifurcation (r/c = O) and a Hopf bifurcation (t/0 = O) occur 
simultaneously. (t/c and r/0 are combinations of the parameters 2 and # 
referred to in the introduction). Guckenheimer (2) shows that these 
degeneracy conditions may be obtained, e.g., for the trimolecular model, 
the so-called Brusselator. (11) In the vicinity of such a codimension-two 
bifurcation, a local analysis is possible. At the bifurcation point 
(~c = t/o = 0) all the eigenvalues COm~ of the linear stability operator H I  have 
negative real parts except one of them, denoted by co,,co (or simply ~omc), 
which vanishes, and a pair of complex conjugate eigenvatues denoted by 
co01 and e)oi, which are purely imaginary. 

The critical value of the parameter t/c and the critical wave vector mc 
associated with the spatial structure emerging from the instability are 
defined as solutions of the system 

0(-om~ 
COme = 0, 0K m - 0 ( 2 . 1 2 )  

with co,,e(Km) satisfying Eq. (2.8). Because of the presence of a space- 
dependent part in Eq. (2.8), in a system of large spatial extension (large n), 
the transition to instability will be marked not only by one eigenvalue 
going to zero, but by the accumulation to zero of a large number of closely 
packed eigenvalues ~Om00 (denoted simply by tom0 when there is no 
ambiguity) characterized by vectors m0 of any direction and of modulus 
close to /mc[. Taking Eq. (2.12) into account, an expansion of o~,, 0 in 
powers of tt~ and (Km0- Km~)= (Kin0- Kc) reduces at dominant order to 

~m0 = r/c q- O c ( K m o  - -  K~) 2 (2.13) 

where Oc is negative and where the bifurcation parameter ~/c is taken to be 
simply r/~ = co,.0(K~). 

As the bifurcation parameter ~/o vanishes, the first instability leading to 
temporal oscillations in a system of two chemical components appears for a 
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vanishing wave vector. Again, because of the large spatial extension of the 
system, the transition is marked by a set of eigenvatues e)q~ with small real 
parts characterized by small wave vectors q or equivalently small values of 
Kq. Their expansion in powers of t/o and Kq reduces at dominant order to 

CO q/~ = tlo + tll Kq + i[3(0o + 01Kq) (2.14) 

where r/1 is negative, and 0o and 01 are constants./3 takes the two values 1 
and i = - 1 .  (We have chosen the second bifurcation parameter to be 
71o = Re COq = o.~.) 

The set of eigenvalues with small real parts COrn0 and o)q~ are called 
"critical eigenvalues" and are denoted globally by ~ot0. The corresponding 
variables al0 are called critical variables. Conversely, the eigenvalues with 
n0nsmall real parts or noncritical eigenvalues are denoted by cots. In the 
vicinity of  the bifurcation point and for a large system, it is now possible to 
evaluate the successive derivatives (2.10), (2.11),... of U through a 
systematic expansion in powers of the small parameters Re col0 which reflect 
the distance to the bifurcation point through qc or qo as well as the size of 
the system through (Km0-Kc) or Kq [see Eqs. (2.13), (2.14)]. It should be 
remarked, considering expressions (2.10), (2.11),..., that the derivatives 
U H't~ of the stochastic potential can be written as a sum of terms, each of 
which is in inverse ratio to a sum o911 + o)t2 + col3 + ... of eigenvalues. It is 
clear that the terms with a small denominator will be dominant and it can 
now be understood why the critical eigenvalues play an essential role in 
our perturbation theory. 

We define a relation of quasiresonance by 

P 

e)l~ = O(Re c%) with p e N *  (2.15) 
i = l  

extending thus the concept of resonance introduced in the theory of normal 
forms. (1'4) In the case of the bifurcation of interest, three different types of 
quasiresonances occur. The relation 

P 

o)m~ = O(O)m0 ) with p e N *  (2.16) 
i=1 

already defined a quasiresonance of order p for a symmetry-breaking 
bifurcation (6'7) and remains true here. The quasiresonance 

COq~ + e)qj~ = O(Re O)qr with s e N *  (2.17) 
i , j = l  

associated with a simple Hopf bifurcation ~1~ still holds. Note that 
quasiresonances of this type are of even order 2s. In the case of the inter- 
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action of the above bifurcations, a third kind of quasiresonance of order 
2s + p appears in the form 

P 
COma+ ~ ~q:~+~qk~=O(Reoto  ) with ( p , s ) ~ ( ~ * )  2 (2.18) 

i=1  j , k = l  

The first quasiresonance of this third kind is of order three. 
The existence of three types of quasiresonances implies that an expan- 

sion of the stochastic potential reduces, at dominant order with respect to 
Re e~0, to a sum of three terms~ 

U =  U su + U H + U I (2.t9) 

where U sB is associated with a symmetry-breaking bifurcation (6'7) or with 
the quasiresonances (2.16); U H is associated with a Hopf  bifurcation ~1~ or 
with the quasiresonances (2.17); U I is an interaction term associated with 
the quasiresonances (2.18). 

2.3. Symmetry -Break ing  Bifurcat ion.  Determinat ion  of  U sB 

A symmetry-breaking bifurcation is characterized by a set of critical 
eigenvalues ~o,, 0 given by Eq. (2.13): C0m0 is real and small in the vicinity of 
the bifurcation. An expansion of the stochastic potential U sB limited to its 
quadratic part can only describe the close neighborhood of the reference 
fixed point (~r 1 = 0) whenever this point is stable. We know from the deter- 
ministic analysis that when the parameter qc increases above its bifurcation 
value r/C = 0, the fixed point is destabilized and gives rise to new attractors. 
Expecting the stochastic potential to give specific information on this new 
behavior, Lemarchand and Nicolis (6'7) carried out the expansion of U sB to 
higher orders so as to include the description of the bifurcation attractors. 
They showed that this expansion can be written in a form exhibiting 
separately the contributions from critical modes and those containing at 
least one noncritical mode: 

u S B  --(Dmto 1 1 2 3 
- - - - O ' _ l O " , , r , , l - ~ -  Umomomoo "- 10" 20- 3 

H -,o -.o ~T mo mo mo 
mcmc 

1 I 2 3 4 1 2 1  I 2 3 4 
"}- -@'.T ( U mOmOmOmO - -  3 um~176 U/r vl#momo) ff~t o'm2 0 " . , 0  ""0 mo30"m04 

1 1 2 (  1 1 3 t 2 
Uz!I 3 ulcmomo O'm I O-m2 , 

+ $ g ' + ' + . a , ~ + $  ++ o o1 

1 1 U / :  m~ m4 o. 4~ X O'l~ -~- "~ UI~14 ~ mi ),O'mO } (2.20) 
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where the expression of the second transition moment Hm~m~ in terms of the 
characteristics of the reaction-diffusion model is given in refs. 6 and 7. In 
this expansion, the coefficients Umom~m; are supposed to verify the condition 

U m0m~m~ ~ (O)mo)l/2 (2.21) 

which amounts to gathering the bifurcating attractors in a small 
neighborhood of the fixed point [tamo I < (C0mo)1/2)]. 

Equation (2.20) states that, thanks to a nonlinear change of variables 
defining the new variables 

--i l 1 2 SIr = (TIC ~ + 1 U ,  .1 u l c m 0 m 0 o ' _ l  0 - 2  (2.22) 
z ~4t~ ""0 ""0 

the noncritical modes may be entirely cast in a polynomial of order two 
[third and fourth lines of Eq. (2.20)]. The probability associated with the 
variables sl, is thus simply a Gaussian distribution. In other words, 
Eq. (2.22) states that the noncritical modes may be adiabatically eliminated 
as anticipated in ref. 5. It is then possible to define separately a "critical 
potential" US~ as a polynomial of order four, depending only on the critical 
variables [first and second lines of Eq. (2.20)]. The determination of UcSff is 
sufficient to describe a symmetry-breaking bifurcation: 

1 

Hmcmc " "o ""o ""o -'o " "o ""o 

+ v~6(m~ + m 2 + mo 3 + mo 4) 0"ml0"m20"m30"m~] (2.23) 

where y and Vl are the dominant orders of the cubic and quartic coefficients 
with respect to q~ and (Kmo-Kc). They are identical to the real parts of 
coefficients of the normal form of the deterministic equations (see the 
Appendix). Their expressions as a function of the characteristics of the 
reaction-diffusion model are given in refs. 6 and 7. Let us mention that, 
according to Eq. (2.21), we impose 

? ~ ((Omo)1/2 (2.24) 

The existence of a critical potential gives the stochastic equivalent of a 
theorem of bifurcation theory, the center manifold theorem. (3'4) This 
theorem proves that, thanks to a nonlinear change of variables, it is 
possible to write locally a system of differential equations in an uncoupled 
form separating the evolution of the critical variables stc from the evolution 
of the noncritical ones sly. The equations of st~ are linear, whereas the non- 
linearities are "concentrated" in the center manifold which is tangent to the 
eigenspace associated with the critical eigenvalues. The theory of normal 
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f o rms  11'4~ used in analysis states analogous properties and gives also the 
way to select the nonlinear terms appearing in the equations of evolution of 
st,, according as they are associated with resonances. Here, the nonquadratic 
terms which have to be retained in the expansion of the critical stochastic 
potential are associated with quasiresonances. Note that there exists no 
rigorous deterministic theory about quasiresonances. 

Finally, it is interesting to note that changing am0 into amo exp(imol ) 
(where the vector 1 corresponds to any translation) leaves the critical 
potential (2.23) invariant. This translational invariance is reflected in the 
proportionality of the coefficients of U sB to the Kronecker delta; it has 
been preserved by the periodic boundary conditions imposed on the 
system. 

2.4. Hopf Bifurcation. Determination of U H 

Considering now a set of complex conjugate critical eigenvalues ~oq~ 
and coqi given by Eq. (2.14), we follow at first the same method as in Sec- 
tion2.3. Applying Eqs. (2.10), (2.11),... only to quasiresonances (2.17) 
allows us to determine the dominant contributions of the critical potential 
U2 associated with a Hopf bifurcation. Because of the even order of the 
quasiresonances, only contributions U (2p~ of order 2p appear in U2: 

Uc r -  H= Mlli 1 - 2  Re c~ ~ ~ 

{ i K(r]I u2 -- 01Ul) '] 
+ ~ b/1 + 4t/o + rl~K+ iO~_K/ 

~(ql + q2 + q3 + q4) O.qi I O.q210.q3 i O.q4 i 

p 2p 1 -{'- U(2p) l-I H aqilGqJI (2.25) 
p=3 i=1 j = p + l  

where 

x=K.,+x.2+x.3+x.4, K-= 

The coefficients u~ and u 2, as well as the second transition moment M~,  
have explicit expressions in terms of the characteristics of the model. (1~ Let 
us emphasize that the noise component MH does not need a "non- 
equilibrium fluctuation-dissipation theorem" to be expressed in terms of 
the dissipative characteristics of the system, as it does in the Langevin 
approach/5~ Apart from this, our method yields the same form of fourth- 
order potential as obtained by Walgraef et aL 
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An essential point which has not been discussed in ref. 5 or in ref. 10 is 
that the fourth-order terms have no limit as qo, _K, and K tend to zero 
unless the condition 

~/1 u2 - 01 ui = 0 (2.26) 

is satisfied. 
Moreover, we prove through a recurrence that higher order derivatives 

U (2p) with p > 2 satisfy 

U (2p)= (r l lu2 - 01Ul) O(Re C0ql) 2 -p  (2.27) 

so that they diverge when Re real ~ 0 if condition (2.26) is not satisfied. In 
this latter case, an expansion of Uc~ is only valid in a neighborhood of the 
fixed point defined by 

o-,1 ~ (Re ~Oql) 1/2 (2.28) 

Uc~ reduces then to its quadratic part and does not bring any new infor- 
mation about the probability surface after the bifurcation. 

Hence, condition (2.26) appears as a necessary and sufficient condition 
to define a fourth-order expansion of Uc~, valid in a neighborhood of the 
fixed point, defined by 

aql < (Re O9ql) 1/2 (2.29) 

In the sequel, the condition (2.26) is supposed satisfied, so that Ucnr reduces 
to 

1 
UcHr : [ --  2 Re  (DqllO-q110qli + bt 1 6 (q  1 + q2 -~- q3 -[- q4) Oqq O'q210-q3i Oq4i ] 

MIi 
(2.30) 

This simple form was previously obtained by Szepfalusy and Tel, (8) who 
mentioned condition (2.26) as a special case which allowed them to reduce 
the model to a solvable "time-dependent Ginzburg-Landau model," well 
known in the critical dynamics of the equilibrium phase transition. Our 
systematic method proves that this condition is the only one under which 
such a polynomial form of Uc~ is valid. 

SB H Note, finally, as for Uor, that Uor possesses an invariance property: it 
remains unchanged under any phase deviation in the form aql ~ aqle i~. 

2.5.  I n t e r a c t i o n  T e r m .  D e t e r m i n a t i o n  o f  U = 

One of the major advantages of our method is its generality. Using the 
concept of quasiresonance, we are able to select all the relevant terms in the 
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Taylor series (2.5), whatever their origin. In particular, the quasiresonances 
of the third kind [Eq. (2.18)], originating from the complex situation of 
degenerate bifurcations, can be handled in the same way as the simple cases 
previously discussed. 

We first state that the third derivatives (2.11) associated with the 
quasiresonance 

(d)m0 -}- (s -J- (J)q,fl = O(Re ~ot0 ) 

always vanish due to their proportionality ~6'7} to 3(m o + q + q'). Knowing 
the expressions (2.13), (2.14) of the critical eigenvalues, we evaluate the 
fourth-order derivatives associated with the quasiresonance 

Q = (R)m0 71- 03m6 -~- (Dqfl q- (.0q,fl 

= 2r/c + 0c[(Kmo -- K~.) 2 + (Km 6 - Kc) 2 ] 

+ 2qo + r / l (Kq  q- Kq,) + iO,( -- K, + Kq, )  (2.31) 

and obtain the rather involved expression 

gmom(~q lq'l 

= 6(mo + m~ + q + q') ( rl~A/Hm~m~ 2tl~ 
\ qo+ r/c 

+0,. [(Xm0 - Kc)2 + (Km  - Kc) 2 3 

( A  B 1 )  r/c 
- ~ I ( K , + K r  H~,h ' ~ Q(q0+qc)  

(A/Hmcmc)01 tic + ( B,/Mli)01 rlo + (B2/MlI)q107o + G )~ 
i( Kq + iq,) ! 

Q(qo + ~)  / 
(2.32) 

where the coefficients A and B = BI + iB2 appear in the normal form of the 
deterministic equations. Their expressions in terms of the characteristics of 
the chemical model are given in the Appendix. Apart from the Kronecker 
delta 6(too + m~ + q + q'), the first term in expression (2.32) is independent 
of the wave vectors too, m~, q, and q'. Indeed, it is equal to the exactly 
resonant fourth derivative 

UmcIhcOlOl = tI~A/Hm~ TM' + tloBt/Ml1 
(2.33) 

r/~ + r/o 
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The point is that this interaction term, which contains explicitly the two dif- 
ferent types of critical modes, becomes infinite on the line t/c + t/o = 0 and 
has no limit when qc and t/0 tend to zero. The analogy with our results for 
the interaction of two Hopf bifurcations (15~ is striking. Due to the codimen- 
sion-two character of the bifurcation, the fourth derivative U m~e"cm~ is 
singular unless the following relation between the coefficients of the 
reaction-diffusion model is satisfied: 

A/Hmca, ~ = BJM11 (2.34) 

As the second transition moments Hmcm, and Mli are positive quantities, 
condition (2.34) imposes 

AB1 > 0 (2.35) 

In the sequel, condition (2.34) is supposed satisfied, so that the exactly 
resonant fourth derivative reduces to 

U mcgnc010I = A/Hm~ifnc (2.36) 

and so that the quasiresonant fourth derivatives (2.32) take the simpler 
form 

um~176 i ( -Kq+ Kq')(O1Bx 

(2.37) 
where Q is the quasiresonance (2.31). 

Nevertheless, it is clear from expression (2.37) that the condition 
(2.34) does not suffice to define the full set of the fourth derivatives. Indeed, 
due to the spatial dependence, the derivatives (2.37) have no limit as 
( - K q  + K~,) and Q tend to zero unless the condition 

01B1 '~- ~1 B2 = 0  (2.38) 

is satisfied. Moreover, higher order derivatives U (2p) associated with 
quasiresonances satisfy 

U(2pl=(O1Bl+qlB2) O(Reo)to) 2-p, p > 2  (2.39) 

so that they diverge for Re e)/o--*0 if condition (2.38) is not satisfied. 
Analogous singularities have been pointed out in Section 2.4 for a Hopf 
bifurcation with a spatial dependence. If condition (2.38) does not hold, the 
expansion of UIr is only valid in a small neighborhood of the fixed point 
which does not include the bifurcating attractors. It is thus necessary 
to impose condition (2.38) to define an expansion of U~cr, valid in a 
neighborhood of the fixed point defined by 

aql < (Re (.Oql) 1/2, O'm0 ~,~ ((-0=0)1/2 
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Under condition (2.38), the quasiresonant fourth derivatives (2.37) are 
simply 

A 
U m~ ~ -  6(mo + mo + q + q') - -  (2.41) 

Hlncl i l  c 

so that the expansion of the interaction term U~r reduces finally to 

A 
UIcr - - -  6(mo~+mo2+q~+q2) o-_la_2o..a~ (2.42) 

2Hm~,n c .-.o ...0 ",- . 

2.6. The Crit ical  Potent ial  Associated w i th  the Interact ion of a 
S y m m e t r y - B r e a k i n g  Bi furcat ion and a Hopf  Bi furcat ion 

We summarize here the results of the preceding subsections. 
The first point is that, near the bifurcation, the search for the 

stochastic potential U may be reduced to the determination of its critical 
part Uor which depends only on the critical variables. 

The second point is that, due to the spatial dependence and to the 
codimension-two character of the bifurcation, it is in general not possible 
to define a Taylor expansion of Ucr valid in a neighborhood of the fixed 
point which describes properly the bifurcating attractors. 

Nevertheless, we proved that a fourth-order expansion of Uc~, valid in 
a sufficiently large neighborhood of the fixed point defined by 

oq: < (Re EOql) I/2, O'mo ,~ ((Dm0) 1/2 (2.43) 

exists if and only if the following conditions between the coefficients of the 
reaction-diffusion model are satisfied: 

t/l u~ B 1 A B 1 
01 u 2 -  B2' Hmcm c = M l  i (2.44) 

This expansion reduces to 

1 
Uc~- E-co_,o- , a - ,  +?3(mo~+m2+mo 3)a ,o 2a 3 

HFIIeI~IIc ~**0 1~0 nlO mo 1~0 gno 

+v16(mol +mc]+mc]+mo 4) a_~o_~_3a  .7 
"'=0 ""0 ""0 m 0 .a 

1 
+ ~ I l I  [ - 2  Re COq,:aqUaqq 

_~ Ul  6(ql + q2 + q3 + q4) O.ql I O.q21 O.q3 i O'q4] ] 

A 
+ _ _  6(mo~ + mo z + q1-4- q2) O.m~0.m~O.ql 1 Gq2i (2.45) 

2Hmca, c 
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This explicit potential contains all the information about the system, Using 
only Eq. (2.45), we shall now deduce both the deterministic and the 
stochastic properties of a general reaction-diffusion system in the vicinity of 
the bifurcation of interest. 

3. D E T E R M I N A T I O N  OF A T T R A C T O R S  

As already pointed out, one of our aims is to deduce the limit sets 
emerging from the complex bifurcation of interest as extrema of the 
stochastic potential [cf. Eq. (2.4)]. Actually, we show that the stochastic 
potential U defined as a solution of the Hamilton-Jacobi equation (2.3) is 
a generalized Lyapunov function (u) of the deterministic flow. 

3.1. Ex t rema of the  S tochas t i c  Potent ia l  Ucr 

Since the behavior of the system is entirely described by the critical 
potential Uc~ given by Eq. (2.45), we look for the states for which all the 
first derivatives of Ucr vanish, 

3Ucr ~Uor ~Uc: 
- 0 ,  - 0 ,  - - = 0 ,  Vq, m o (3.1) 

(~0" mo 30"ql (~O'qi 

The system (3.1) has a great number of solutions, but we restrict our 
analysis to solutions in the following form: 

O'm0 = O'c(~mo,k -~ O'c~(~m0, k 

o-q1 = aO6q, O (3.2) 

% = ~*6q,o 

where the asterisk indicates complex conjugate and where the direction of 
the vector k is fixed [its modulus is imposed by the wave vector mc 
solution of system (2.12)]. 

The type of solution O-m0 we look for limits the study to spatial struc- 
tures built on a single wave vector k. 

Substituting or, o, aql, and aq~ from Eqs. (3.2) into Eqs. (3.1) yields 

( -  2r/c + A lao] 2 ...[_ 12vi lact ~ ) ~  = 0 (3.3) 

(-2r/o + 2u~ lao[ 2 + B1 ja,[2)ao = 0 (3.4) 

where A and B 1 satisfy condition (2.34). 
As Eqs. (3.3), (3.4) impose only the moduli of a C and ao, we introduce 

polar coordinates 
~c = Rc ei~', ao = Ro  ei~~ (3.5) 



Interaction of  Hop f  and Symmetry-Breaking Bifurcations 629 

defining the moduli R, and Ro and the phases ~bc and ql o. Equations (3.3), 
(3.4) admit the four solutions gathered in Table I. 

The first solution 

Rc = 0, Ro = 0 (3.6) 

corresponds to the initial fixed point. 
The second solution 

R,2 = t l~/6v ~ , R o = 0, Vqt~, ql o (3.7) 

corresponds to a spatial structure which exists after the bifurcation point if 
v~ > 0. In the sequel, we suppose that this condition is satisfied. To obtain a 
better representation of this structure, it is instructive to return to the 
initial variables x , ~ -  ff~ through Eq. (2.6): 

x,~ - ~= = 2Rc(ck) ~ cos(kr + ~b~) 

where (ck) ~ is one of the eigenvector solutions of Eq. (2.8) associated with 
the eigenvalue C%o = r/C. 

The structure corresponds to a spatial oscillation of the concentrations 
with an amplitude 2R,.(ck) ~ a pulsation k, and a phase ~bc. As Eqs. (3.7) 
impose only the modulus of crc, the structures obtained when ~bc varies are 
equally probable. A variation A~b~ of the phase corresponds to a translation 
of the patterns by A r such that A r,k=A~b~. This property is a con- 
sequence of the translational invariance of the stochastic potential USff 
given by Eq. (2.23). Hence, Eqs. (3.7) define a set of spatial structures 
obtained from one another by t r a n s l a t i o n .  

The third solution 

R c -~- O, R 2  ~-- ~o//,/1, V~c, ~o (3.8) 

Table I. Extrema of the Stochastic Potential  Ucr ~ 

Fixed Spatial Limit Spatiotemporal 
point structure cycle structure 
(3.6) (3.7) (3.8) (3.9) 

r/C 2(2ul r/c - At/o) R~ o - -  o 
6v 1 24ul vl - -  A B I  

Ro 2 0 0 t/o 2(12vl t/o - Ba t/c) 
us 2 4 u l v l  -- A B I  

~The analysis is limited to solutions in the form (3.2). Only the moduli R,. and R o are 
imposed; any values of the phases r and ~bo agree. 

822/53,/3 4-6 
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corresponds to a limit cycle, identical to the limit cycle issuing from a 
simple Hopf bifurcation. (~~ It exists after the bifurcation point if u~ >0 ,  
which we shall assume in the following. 

The fourth solution 

2(2u~ t/~ - At/o ) 2( - B~t/~ + 12Vx t/o ) 
R 2 = , Ro 2 - (3.9) 

24u 1 v 1 - A B ~  24u 1 v l  - A B 1  

corresponds to a spatiotemporal structure characterized by oscillations of 
the concentrations in both space and time. Before discussing the conditions 
of existence of this structure, let us give a more evocative picture of it by 
returning to the initial variables 

xr~ - ff~ = 2Rc(ck) ~ cos(kr + ~b~) + 2Ro[ (Co)~] cos[arg(co)l~ + ~bo] 

where (Co)l, is a complex eigenvector of M~', a solution of Eq. (2.8) with 
Wol = ~1o + iOo. 

The states associated with different values of the phase ~bo are reached 
successively when time is varied, as is shown in the Appendix [see 
Eq. (A.9) for the justification of ~bo ~- O o t ] .  Figure 2 represents the temporal 
oscillations, or better the "breathing" of the spatial structure, which is not 
distorted in the course of time [see Eq. (A.9) for the justification of ~ ~ 0]. 

1/k  
, 
I 

- - - -o -~  . . . . . . .  

r 

Fig. 2. Ampl i tude  of the spa t io t empora l  s t ruc ture  (3.9) {Xr~-- ~?~ = 2Re(ok) ~ cos(kr  + ~bc) + 
2Ro [(Co)I[ cos [arg(e0)~ + ~b ~ } for different values of ~b o [ = 2n~, ~/2 + 2n~, and  (2n + 1)~, with 
n s N ]. As is justif ied in the Appendix ,  ~b o plays the role of time. W h e n  t ime is varied,  the 
spat ial  oscil lat ions are no t  distorted,  bu t  the ampl i tude  x , ,  - ~ ,  oscillates between two ext reme 
s inusoids  associa ted  wi th  ~bo = 2nn and  ~bo = (2n + 1)ft. 
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Table I1. Conditions of Existence of the Spatiotemporal Structure 
Defined by Eq. (3.9) 

631 

24u 1 v I - A B  1 > 0 24u~ v~ - A B  1 > 0 24u~ v~ - A B  1 < 0 

A < 0  A > 0  A > 0  
Case a Case b Case c 

A A A 
R , .  r/~ > ~7ul r/o n~ > 2u---~ r/o r/c < ~-~ul r/o 

12v I 12vl 12vl 
Ro ~ >-BT ~/o ~/, <--~- ~/o rb>~7[~o 

We gather in Table II the conditions of existence of Rc and R0 defined 
by Eqs. (3.9). Let us recall that the parameters ul and vl are suppose to be 
positive and that, according to Eq. (2.38), ABI>0 .  We exclude the case 
A < 0  and 24ulv~-ABl<O, for which Rc and Ro never exist after the 
bifurcation point, as we excluded the cases ul < 0 and Vl < 0. 

3.2. Nature of the Extrema of Ucr 

From now on, we shall restrict our description of the probability 
surface to a small neighborhood of any extremum previously obtained [see 
Eqs. (3.7)-(3.9)]. The natural variables for this description are those for 
which the local second derivatives of Uor at one arbitrary point of the 
family of extrema reduce to a diagonal matrix. In particular, the sign of the 
eigenvalues of this matrix gives the nature of the extrema. The first step is 
thus to evaluate the quadratic terms V (2) of the potential expanded around 
an extremurn in the form (3.2). 

Defining the deviations from an extremum through 

~mo = G m o -  (O'c~mo,k "~ O'c* ~mo, - -k)  

~ql ~ O'ql - -  O'O~qO 

~qi = O'qi - -  0"~ (~qO 

(3.10) 

it is possible to show that V (2) may be split into two parts: the first part, 
V~ 2), depends only on the variables ~q+k, ~q-k, ~ql, ~qI, and their complex 
conjugates, whereas the second part, V(m20 ), contains all other critical 
variables, denoted by ffm0 with mo ~ _+(k + q) (let us recall that the direc- 
tion of the wave vector k is imposed). From a mathematical point of view, 
this property of V (2) is a direct consequence of the proportionality of the 
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coefficients of the critical potential Uor [Eq. (2.45)] to the Kronecker delta. 
Hence, V (2) may be written as 

V(2)-- 2 Vq (2)+ Z V~0) (3.11) 
q mo~ • • 

From a physical point of view, these two different parts of V (2) express the 
existence of two kinds of eigendirections in the phase space, pointing 
toward states of clearly different nature. Changing the sign of an eigenvalue 
of V (21 or V~0) would imply a destabilization of the initial structure in favor , q 
of two different types of new structures. In the first case, the new structure 
would approximatively keep the essential characteristics of the initial one; 
in particular, the description with the wave vectors q = 0 and k is still valid. 
In the second case, the new structure would be built on different wave 
vectors. 

Let us first consider the second term of Eq. (3.11), V~0), which may be 
written in the form 

V (2) 
m0 

mo~: • +q) 

= ~ 1 _e)mo + 12vlR2 +_~ 
mo ,,s • (k + q) g m ~  m~ 

k + m 0 r  

-[- [Q- - ( J )m0  "[- 12 / )1R c AI--~ Ro) ~mo~rh0 
m0 e _+(k + q) Hmcmc 

k+m0=m~ 

-k 3T(O'c~moff k-mo -[-ac*~moffmo+k)/ (3.12) 
A 

The last term in Eq. (3.12), proportional to ~, arises from the cubic terms of 
the critical potential (2.45). Because of their proportionality to a Kronecker 
delta, the last term in Eq. (3.12) is only summed on vectors mo such that 
- m o - k  is critical and such that k, m0, and - k - m o  form a quasi- 
equilateral triangle (see Fig. 3). The first sum in Eq. (3.12) is already a 
diagonal Hermitian form, the eigenvalues of which are easily evaluated for 
R c and R0 associated with the various extrema. For cases (3.7), (3.9), the 
above eigenvalues denoted by 2m0 are positive as soon as the corresponding 
extrema exist. A condition of stability, different from the conditions of 
existence, is obtained for case (3.8): taking into account the expression 
(2.13) of C0m0 with 0c. <0,  we find that the eigenvalues 2m0 are positive if 
A q o -  2ulqc > 0. Comparing this inequality with the results summarized in 
Table II, we see that the limit cycle (3.8) is unstable when the spatio- 
temporal structure (3.9) exists for cases a and b, but is stable for case c. 
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-k-too 

m o 

- k - -  

Fig. 3. Illustration of the different possibilities for the vector m0 appearing in the last term in 
Eq. (3.12). The modulus and the direction of the wave vector k are imposed by the spatial 
structure of interest, and so m0 is such that - k - m 0  is critical and such that k, mo, and 
- k -  m0 form a quasiequilateral triangle. 

The second sum in Eq. (3.12) may be written in a matrix form and 
diagonalized. Writing the condition of stability for case (3.8) does not bring 
any new information, but for cases (3.7), (3.9) the eigenvalues are positive 
if, respectively, 

( _ ~ )  1/2 (4u~r/c-2A~/o'~ ~/2 
" ~ ] ) 5 0 ,  V 1 \~Ui~ll---~B--[/ __+7>0 (3.13) 

According to Eq. (2.24), if 7 ~ ((D/0) 1/2, we can find values of ~/c and qo for 
which one of these inequalities is not satisfied. The' spatial and spatio- 
temporal structures built on a single wave vector k then become unstable 
and structures built on three or more vectors appear, as mentioned by 
Walgraef et al. ~5) In the sequel, we suppose that ~, may be neglected with 
respect to (c%) I/2, so that the inequations (3.13) are always satisfied. 

We now consider the first part Zq V~ 2) of Eq. (3.11). It may be written 
in the following matrix form: 

q 

"- 6v,a2 

Eq Hmcm c 

61)l 0-*2 
E 

Omc mc -- q 

Aao0-* Aao0-~ 
2H=~,~ 2H,.c,~, 

A0-'0-* Aa*0-c 

2Hm~m c 2H=cmc 

Bla*ac B10-oac 
2M1i 2M1~ 

Bl0-0 0-c B10-oa* 
2M~I 2MlI 

Ul 0-2 
F 

q M~i 

u10-'2 F 
M1i q 

e-- 

~q+k 

~q k 

~qi 

(3.14) 
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where 

Eq= 1 ( A ) 
1.-lmcm c --(Dq +k + ' ~  laol 2 + 12vi Io-cl 2 

Fq = M--HI1 --Re (Dql + 2U 1 IOOI 2 + T  laCl= 

(3.15) 

and where cr o and ~r c satisfy system (3.4). Table III gives the eigenvalues of 
matrix (3.14) evaluated for each extremum of the stochastic potential Ucr 
given by Table I. 

Note that the spatial structure (3.7) is characterized by a vanishing 
eigenvalue 2q=oo = 0 associated with an eigenvector tangent to the set of 
spatial structures obtained from one another by translation. Similarly, the 
limit cycle (3.8) is characterized by a vanishing eigenvalue 2'q=oo=0 
associated with an eigenvector tangent to the limit cycle. The spatiotem- 
poral structure admits two vanishing eigenvalues 2q =o0 = 0 and 2'q=oo--0 
in the two directions defined previously. 

Determining the sign of the eigenvalues of V~ 2) whatever q, we deduce 
immediately from Table III the conditions under which the extrema 
(3.6)-(3.9) of Ucr are minima. The conditions of stability of structures 
(3.6)-(3.9), or, equivalently, the domains of existence of the corresponding 
attractors, are summarized in Table IV. 

As expected, the conditions of stability of the fixed point (3.6) deduced 
from V~ 2) are totally in agreement with the deterministic conditions 
deduced from the linear stability operator H/' associated with the eigen- 
values (2.13) and (2.14). 

Note that the conditions of stability of the limit cycle (3.8) imposed by 
V~0) defined by Eq. (3.12) are identical with the conditions deduced from 
the analysis of V~ 2) defined by Eq. (3.14). 

Comparing Table II and IV, we conclude, for cases a and b, that the 
spatial structure (3.7) and the limit cycle (3.8) are unstable as soon as the 

Table IV. Conditions of Stability of Structures (3.6)-(3.9) 

Fixed Spatiotemporal 
point Spatial structure Limit cycle structure 
(3.6) (3.7) (3.8) (3.9) 

Domains of r/C < 0 r/c > 0 r/o > 0 
parameter r/o<0 B l r l c - -  12v~r/o > 0 -2Uxr/c + At/0 > 0 
space 

24UlVl - - A B  1 >0 a 

If Ro and R c  given by (3.9) exist. 
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Fig. 4. (a) Domain of stability of the different attractors in the parameter space (r/0, r/c) in 
case a (A < 0, 24Ul v~ - A B 1  > 0). Open sector, lower left: domain of stability of the initial fixed 
point (dot). Horizontal lines mark the domain of stability of the limit cycle (oval). Vertical 
lines mark the domain of stability of the spatial structure (wiggly line). Diagonal lines mark 
the domain of stability of the spatiotemporal structure (wiggly line plus oval). (b) Domain of 
stability of the different structures in case b (A > 0 ,  24ulv ~ - A B  1 > 0 ) .  Same key as for part 
(a). (c) Domain of stability of the different structures in case c (A > 0, 2 4 u l v l - A B I  < 0 ) .  
Same key as for part (a), apart from the domain of coexistence of the limit cycle and the 
spatial structure. 
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Fig. 4 (continued) 

spatiotemporal structure (3.9) is stable. Conversely, for case c, the 
spatiotemporal structure is never stable, but there exists a domain of 
coexistence of the spatial structure (3.7) and of the limit'cycle (3.8). These 
results are illustrated by Fig. 4. 

The domain of existence of a spatiotemporal structure (cases a and b) 
or the domain of coexistence of a spatial structure and a limit cycle (case c) 
may be reached by two qualitatively different ways. These two possibilities 
are illustrated by sections of the bifurcation diagrams along either a line 
crossing the domain of stability of the spatial structure (3.7) (see Figs. 4 
and 5) or a line A' crossing the domain of stability of the limit cycle (3.8) 
(see Figs. 4 and 6). It is clear from Figs. 5 and 6 that, on the boundary 
between the domains of stability of the spatial structure (3.7) and the 
spatiotemporal structure (3.9), the amplitude of the spatial component Rc 
does not undergo any discontinuity. The same property is observed on the 
boundary between the domains of stability of the limit cycle (3.8) and the 
spatio~emporal structure (3.9) for the amplitude of the temporal com- 
ponent Ro. Note the continuity between the eigenvalues of V~ 2) given by 
Table III on these boundaries, too. 

It is interesting to compare cases a and b: this brings out the effect on 
the bifurcation diagrams of the sign of A which appears through Eq. (2.42) 
as the "interaction coefficient" of the stochastic potential. If A < 0 (case a), 



(a)  

(b) 
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i . . . . . . . . .  t _ t / / /  . . . .  

A lB E x 

Fig. 5. (a) Section of the bifurcation diagram along the line A in cases a--c of Fig. 4. initial 
fixed point; oval, limit cycle; wiggly line, spatial structure; wiggly line plus oval, spatiotem- 
poral structure; (--)  stable and ( - - )  unstable structures. 
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Fig. 5 (continued) 

the domain of stability of the spatiotemporal structure (see Fig. 4a) is 
always greater than the quadrant defined by r/c > 0, r/o > 0 and it increases 
with [AI up to a half-plane. Moreover, the amplitudes Rc and Ro of the 
spatiotemporal structure (3.9) are larger than the amplitude Rc of the 
spatial structure (3.7) and the amplitude Ro of the limit cycle (3.8) (see 
Figs. 5a and 6a). Conversely, if A > 0 (case b), the domain of stability of 
the spatiotemporal structure (see Fig. 4b) is smaller than the quadrant 
defined by rb>0,  r/o>0 and it decreases with fAr. The amplitudes Rc and 
R o of the spatiotemporal structure (3.9) are smaller than the amplitudes R C 
and Ro given, respectively, by (3.7) and (3.8) (see Figs. 5b and 6b). 

For case c, the domain of existence of structures (3.7) and (3.8) 
increases with ]AI but is never larger than the quadrant defined by q~ > 0, 
~/o > 0. 

3.3. C o m p a r i s o n  w i t h  D e t e r m i n i s t i c  Results 

We give in the Appendix the normal forms of the deterministic 
equations describing the evolution of the concentrations. We immediately 
verify that the extrema of the stochastic potential Uc~ given by Table I are 
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Fig. 6. Section of the bifurcation diagram along the line A' in cases a-c of Fig. 4. 
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Fig. 6 (cont&ued) 

identical with the deterministic limit sets. Note that the expansion (2.45) of 
Ucr is only valid if conditions (2.44) between its coefficients are satisfied. 
Although these constraints may seem drastic, they actually correspond to a 
generic situation. Indeed, any small deviation from the imposed conditions 
does not modify the topological structure of the bifurcation diagram. Thus, 
our stochastic analysis gives a satisfying description of the systems 
associated with the same topological types. Nevertheless, conditions (2.44) 
preclude some interesting behaviors predicted by the deterministic analysis. 

In particular, it is known that the limit cycle (3.8) may be destablilized 
through inhomogeneous perturbations that may lead to phase 
turbulence. ~6~ According to deterministic results, a6~ this may happen if the 
coefficient rllu~+Oiu 2 is positive. Because of condition (2.26), namely 
r/1 u 2 -  01 u l = 0, this coefficient reduces here to (tll/u~)(u~ + u~), which is 
always negative. Hence, an expansion around the fixed point of the 
stochastic potential does not describe the inhomogeneous destabilization of 
a limit ~ycle. In a less ambitious approach, it is possible to describe this 
bifurcation provided that the probability is limited to a small 
neighborhood of the limit cycle which does not include the fixed point. 

Another type of bifurcation is ruled out because of condition (2.34), 
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which imposes AB1 > 0. Indeed, if the signs of A and B1 were different, it 
would be possible to observe a Hopf bifurcation in the space of moduli 
(Re, Ro). Following then the deterministic analysis of Guckenheimer and 
Holmes, (4) we know that the next step in the bifurcation cascade consists in 
a bifurcation from the quasiperiodic attractor to a homoclinic orbit. 
However, such a complex behavior is not described by a normal form 
truncated to its cubic terms. It is thus hardly surprising that such a 
complex situation is not described by a smooth probability surface. 

Beyond the comparison with deterministic results, our aim is to take 
advantage of the specific information given by the stochastic potential. In 
particular, this quantity describes the fluctuations of the concentrations 
around their deterministic values. In order to establish whether a structure 
associated with a given attractor is observable at a macroscopic level, it is 
crucial to determine how these fluctuations of concentrations at different 
points of the system are correlated. Indeed, the spatial correlations between 
two distant points measures the ability of the system to maintain a 
coherent behavior at long range. 

4. SPATIAL  C O R R E L A T I O N S  OF THE F L U C T U A T I O N S  
A R O U N D  THE D IFFERENT A T T R A C T O R S  

One of the results of the previous sections is the existence, in the spec- 
trum of the quadratic form V ~2) around a point of an attractor (3.7)-(3.9), 
of one or two vanishing eigenvalues 2q=oo or. 2'~ = oo (see Table III). These 
vanishing eigenvalues reflect the fact that the attractor is not a point of the 
phase space but a one- or two-dimensional manifold. The corresponding 
eigenvectors are tangent to this manifold. In addition, for a large system, 
the eigenvectors associated with 2qO or ).'q0, with nonzero but small q, define 
directions of the phase space along which the probability does not remain 
rigorously constant but is very slowly varying compared to the other eigen- 
directions. For given r/0 and t/c all the eigenvalues 2qo and 2'qO have orders of 
magnitude much smaller than the others, provided that q obeys the 
following inequalities (see Table III): 

Oc(Kq+ k - Kc) 2 ~ rlc 

Oc(Kq_k--  Kc) 2 ~ qc (4.1) 

tll Kq ~ tlo 

Among all the states in the neighborhood of our arbitrary reference point 
on the attractor, the states which have nonnegligible components only in 
the eigendirections associated with 2qO or 2'qo [with q obeying (4.1)] have a 
probability very close to its maximum value. For these particular states, the 
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Taylor expansion of the stochastic potential has to include terms of order 
higher than two, or, in other words, fluctuations may reach very large 
values in these eigendirections. This is why the correlation of these 
fluctuations plays a crucial role in sustaining or destroying the attracting 
structures predicted by the deterministic theory. 

4.1. Local Po ten t ia l  a round  an A t t r a c t o r  

By virtue of the previous analysis, the local description of the 
stochastic potential around an arbitrary point of an attractor begins with 
the diagonalization of the quadratic form V~ 2). The new variables 
associated with the various eigenvalues (given for each attractor by 
Table III) will be globally denoted by {y}. For example, Yqo is associated 
with the small eigenvalue 2qo, whereas yq~ denotes globally the eigendirec- 
tions associated with nonsmall eigenvalues. The cubic and quartic terms of 
the expansion are then computed only for the states having nonnegligible 
Yqo (and/or Y'qo) and small components in other eigendirections. To 
separate the various terms in terms of critical and noncritical contributions, 
we use arguments of the same type as used by Lemarchand and Nicolis (6'7) 
in the case of the fourth-order expansion U sB around a fixed point ~see 
Eq. (2.20)]. The results are given for each attractor in Table V. 

The point is that the expansion of the potential reduces here to a sum 
of quadratic terms in the variables y themselves and in some particular 
nonlinear combinations of them, yq~-  g({yqo )). This was not the case in 
the fourth-order form (2.20), in which cubic and quartic terms remained 
even after the nonlinear change of variables (2.22). This different behavior 
may be interpreted as follows: though the separation of terms in the two 
types of fourth-order expansions of U is based on the same idea, namely 
the existence of small eigenvalues in the matrix of the quadratic part, the 
difference comes from the distinct nature of the vanishing eigenvalues. In 
the first case [described by Eq. (2.20)], the vanishing eigenvalue originated 
from the bifurcation of the fixed point. In the present case, a zero eigen- 
value is a consequence of the nonzero dimension of the attractor. In other 
words, it originates from the invariance of U when one moves along this 
attractor, i.e., on the manifold {yo~=g(~Yoo}); Yq~o~=0}. Clearly, this 
invariance property would not be preserved if other nonquadratic terms in 
Yqo would have remained. As a result, the probability of the states of 
components {Yq0}, whatever (yqo}, is properly given by the Gaussian 
approximation. 2 

z The Gaussian approximation fails only if another eigenvalue )~qo with q 4:0 vanishes. 
Analyses of this new type of bifurcation would need to compute higher order terms in Kq or 
K+ and K_ in the expansion of 2qo or 2'q0 (see Table III). This is the aim of the phase 
diffusion analysis. 1161 
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Table V, The Stochastic Potential  Vq around an A t t r a c t o r  a 

Vq 

Spatial structure 
(3.7) 

Limit cycle 
(3.8) 

Spatiotemporal 
structure 
(3.9) 

] (3VllI/2yqOYq-q'02 
Z ;.,olYqol2+)~v Yql--~ '~  \ r], / 
q q' 

§ 2q2 lYq212 q_ 2q3 lYq3]2 

E'~;oly;o[2 + )o;~ Y',l-E~\~noj 
q q' 

+ ,t'q21 y'q212 + 2'q3 ly;312 

2qo I Yqol 2 + ).qo I yqol 2 
q 

Yqa v2u1GR~ -GZ)V2R~ 
+ #.1 - - 7  7~ - -M- '  ]- ~7  Y.0 Y.-q'o 

V AGRo + 12va(1 -- G2) 1/2 R c 2 
-7 2,A  ,;oy;_.o 
+,u, v y;l_E -2ul(1-G2)I/2Ro+ B1GR~ 

q' 2.X~ Mli/./,q t Yqo Yq-q'O 

_ ~ --A(1 -- G2)1/aRo q" 12v1GR c Y;o Y;-q'o 2 
,, 2 x/-2 H=cn, c/~'ql 

a The eigenvalues of V~ 2) are given by Table III. R c and Ro are given by Eqs. (3.9) and G is 
given in Table III. 

The large fluctuations of these components  are simply expressed by the 
covariances: 

~(q+q') 
( Yqo Yq'o ) = 2nN2qo , ( Yqo Y','o ) = 0 

(4.2) 
6(q+q' )  

(Y',o Y'q,o ) = 2nN2,qo 

4.2. Evaluation of the Spatial  Correlat ion Funct ion 

All the essential deterministic and stochastic characteristics of the new 
temporal  and/or  spatial structures can be described in the space of the 
complex variables {~rq,}, {%+u},  where q runs in a large set of closely 
packed small values. Switching to space-dependent  variables, we define the 
following complex order  parameters  

�9 s B  _ " ( 4 . 3 )  o."=Zqle-'"'. -Z ,+ke '"' 
q q 
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With these definitions, any point on the new attractor (3.2) is given by 
homogeneous values of the order parameters: 

sB = Rceir (4.4) a M = Ro eioo, a r 

We know from the previous analyses (1~ that fluctuations will play an 
important role for some particular variables upon which the stochastic 
potential (2.45) does not depend. In order to bring out the role of this kind 
of variable, we use a polar representation of the order parameters and set 

sB e x p ( i k  �9 lr) ,  (4.5) o "H = R r exp(i~b,), O'r = D r  

It is easily verified that any homogeneous translation of the "phase" 
variables {q~r} and {k/r} has no effect on the stochastic potential U. This is 
why fluctuations of these variables play a dominant role. Indeed, the 
explicit calculation of the variables { y } in which the local quadratic form 
V~ 2) is diagonal proves that the Fourier transforms of the phase variables 
are approximately proportional to the "most fluctuating" variables Yqo and 

t Yqo. We obtain explicitly (1~ 

Yqo = x ~  ~ P r  I sin(k/r~ - ~bc) exp(irlq) 

i 
Y'qo = ~ n Rr~ sin(~@- ~bo) exp(irlq) 

(4.6) 

In the vicinity of the arbitrary point chosen on the attractor (Vr, Pr = Re, 
kit = ~bc, Rr = Ro, ~br = ~bo), these expressions reduce to 

Yqo = x ~  / Rc(klrm- ~bc.) exp(irlq) 
n 

yqo = x ~  n '  _i Ro(~@ -- ~o) exp(ir lq) 

(4.7) 

As a result, the variables { k l r - ~ c  } and {q~r-~bo} as their linear 
t combinations {Yqo} and {Yqo} have a Gaussian distribution which can be 

written 

e({Yqo}, {Y'qo})= Zexp  ( - n N ~  RqolYqol 2) 
q 

q 

(4.8) 

where Z and Z' are normalization constants. 

822/53/3-4-7 
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Substituting for Yqo and Y'qo from Eq. (4.7) into Eq. (4.8), we obtain the 
probability of the "phase variables" ~b r, kl r 

with 

P({klr}, {q~r})= elP~ (4.9) 

1 ,4,0, 
P , = Z e x p [ - n N ~ 2 q o 2 R : l ( k l ,  l-Oc)exp(irlq)[ 2] (4.11) 

q /12 " 

Using the expressions for 2qO and 2'qo given in Table III, assuming a 
continuous description of the space dimensionless variable r, and perform- 
ing the summation over q yields 

Pee=Z' exp [ - N 2 ( - r l ' )  R2 y (V~br)2 ddr (4.12) 

P ,=  Z exp { -  N 2(-0c)  R: f k/r[e(k" iVr)2 + (V r �9 Vr) 23 klrddr} (4.13) 
Hmcl i l  c 

Thus, the two kinds of phase variables { ~ r }  and {k/r} have no cross- 
correlations and each of them has a Gaussian distribution whose 
correlations may be determined analytically. This Gaussian distribution 
remains invariant by any homogeneous translation of the phase variable. 
The same type of probability has already been derived in a similar way (1~ 
or through a Langevin method (9) for a simple Hopf bifurcation. Our 
technique proves to be equally suitable for a symmetry-breaking bifur- 
cation and even for all the attractors issuing from the degenerate situation 
described in the present work. 

Now, to express the spatial correlation of the order parameters a~ and 
o-sB around the new spatial and/or temporal structures, we have to com- 
pute the following covariances 

I (o-~" o-~* )l = (RrRr' exp [i(~ r - Oc) ) 
egl (exp [i(~b r - ~br,) ] )l 

i<o-~B, sB. O" r, >1 = (prpr, exp[i(k.lr-k.l , ,) '])  
(4.14) 

-~ R21 @xp[i(k .I r - k- lr,)] )] 

I<o-~" o- sg" )l = (RrP,, exp[i(~br- k" !,')] ) 

~- RoR~ I (exp[i(~b, -- k. !,,)] )1 
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where we have neglected the fluctuations of R r and p, around Ro and R,. 
(compared to the "most fluctuating" variables q~r and k/r). Mean values of 
the form @xp[ i (Xr -X , , ) ] )  can be considered as the values of the 
generating function G({vr})= (e v x )  for Vr=i, Vr,= --i, Vr,,er, r ,=0. For a 
Gaussian distribution of {X~}, this generating function has a simple form, 
which leads to the following results (see, e.g., ref. 18): 

I ~exp [i(Xr - Xr,)] l = exp[ -- ~(X r -- X~,)2)/2] 
(4.15) 

[~exp(iXr))l = e x p [ -  {(X~)2)/2] 

This allows us to express the covariances (4.14) in terms of the Gaussian 
covariances (4.12), (4.13) of {~br} and {k" l~). The latter are computed by 
coming back to the Fourier transform variables. We obtain in a d-dimen- 
sional space 

Fa(r, r') u = I (a  H" aH)l 

Mli  1 - cos q(r - r') daq 
R 2 exp 

N ( _  4r/1)Ro z ~ q2 ( ~ j  

Fj(r, r') sB = I (a  sB" a~,sB )l 
Hm~m~ 1 -- COS q(r-- r') ddq 

= R~ exp - N(-4Oc)R 2 ~ k - ' - ~  + (q" q)2 (~-~Jj 

I (a~"" O'r~,~)l = I ~ ) l  ! ~s '~)J  = 0  (4.16) 

The integrals in Eqs. (4.16) depend on the dimensionality d of the system. 
The domain of integration in the q space has to be limited to the domain of 
validity of our local expansion. 

On one hand, we must impose 

O c ( K q + k - - K c ) 2 < t l c ,  tllKq < rio (4.17) 

We will denote by qM the maximum value of the modulus Iql which 
satisfies (4.17). The quantity v=2~/qM is the smallest wavelength 
corresponding to the most inhomogeneous mode incorporated in our 
description. 

On the other hand, the modulus [ql is limited to a minimum value 
qm = 2~/n~ (n~ is the number of cells in one direction) corresponding to the 
first nonhomogeneous mode appearing in the probability distribution 
(4.10), (4.11). 

For all values of [ r - r ' J  such that ] r - r ' ]qm remains small while 
Ir-r'l qu  remains large, that is, for 

v ,~ Ir - r'] ~ nl (4.18) 
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Table  VI .  

Lemarchand,  Lemarchand,  and Sulp ice  

The Spat ia l  Corre la t ion  Funct ion  F d ( r ,  r')  H for  a System of  
D imens iona l i t y  d ( d e { l ,  2, 3} )  and for" 

V = 2 ~ / q M ' ~  I r - -  r'[ ,~n I = 2n/q,,,  

Fe(r, r ') H 

d = l  

d = 2  

d=3 

I 1 MIi Ir-r'l (1 + elm + e~')] 
Ro2exp - N 4 ( _ ~ , ) R o  2 ~ -  

Ro 2 exp N 4( - t/~) R 2 2n qM ~ m ~  +C+e~t+e'~ 

R0Zexp N4(_ql)R022~z21r_r, I I r - r l q M - ~ + e 3  +e~' 

The results are valid for the three types of structures characterized by the values (3.7), (3.8), 
or (3.9) of R0. e~ and e~' tend to zero with I r - - r ' l - lqM 1 and I r - r ' l qm,  respectively. C is 
Euler's constant. 

Table  VI I .  The Spat ia l  Cor re la t ion  Funct ion  Fd( r ,  r') ss for  a System of  
D imens iona l i t y  d ( d e { l ,  2, 3} )  and for  ~ 

V = 2rr/q M ,~ [r -- r' I <~ n 1 = 2rt /q m 

.Fd(r, r') sB 

d = l  Fl(r, r')SB ~ 2 I 1 Hmca~' 1 ]r--r ' l  (1-r 
R cexp -N( -40~)R~4k  2 

1 H ~  1 1 
d = 3  F3(r ,r ' )Sa=R~exp - N(_40~)R22k8 ~ [ ln2 [ r - - r ' l  Ik[+C 

+ e~'+ eT + E l (21 r - r ' l  Ikl)]} 

( r - r ' ) / / k  

a The results are valid for the three types of structures characterized by the values (3.7), (3.8), 
or (3.9) of Re. e~ t and e~' tend to zero with I r - r '  L lqff and [ r - r ' [qm,  respectively. C is 
Euler's constant. E1(2 I r -  r'l [k[) is the exponential integral,119) which tends to zero for large 
arguments. 
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the integrals in Eqs. (4.16) exhibit simple I r - r ' l  dependences. Tables VI 
and VII give the spatial dependence of the correlation functions for 
de  {1, 2, 3}. According as Ro and Re. take the values (3.7), (3.8), or (3.9), 
these results give the spatial correlations of the three types of previously 
described structures. 

We thus conclude that, in one-dimensional systems, the spatial disper- 
sion of the "phase variables" ~(~r--~r,) 2) or ((ki t-ki t , )  2) increases 
linearly with the distance I r - r ' l .  The uncorrelated values of the phase at 
two distant points smear the structure and compromise its observability. 

This phenomenon becomes smoother but remains in two-dimensional 
systems, where the phase dispersion increases as the logarithm of the 
distance. The same result (logarithmic dependence) is observed for 
~(kl,.-kl~,) 2) even in three-dimensional systems. In particular, the pure 
spatial structure (3.7) (built on a single wave vector) is subject to this 
spatial dispersion of the phase and is expected to be smeared in large three- 
dimensional systems. 

The case of homogeneous temporal oscillations [attractor (3.8)-] in 
three-dimensional systems is the only one for which the correlation function 
does not decrease rapidly with the distance J r - r '  I. Actually, the spatial 
dispersion ((~r--~r,) 2) iS, in this case, quasi-independent of l r - r ' l .  
According to this result, a temporal oscillation is expected to be observable 
in a macroscopic system of dimensionality three. 

5. C O N C L U S I O N  

We have given a first approach to highly degenerate codimension-two 
bifurcations, where the large spatial extension of the system is responsible 
for the quasi-infinite dimension of the center manifold. The normal form of 
the deterministic system reduced to these critical variables has been derived, 
as well as the expression for the bifurcating attractors, including spatiotem- 
poral structures which appear through secondary bifurcations specific to 
the degenerate codimension-two bifurcation under consideration. From the 
stochastic point of view, we have shown that near criticality the stochastic 
potential can be split into the sum of a quadratic term with respect to non- 
critical variables (Gaussian distribution) with a minimum depending on 
the critical variables as seen in Eqs. (2.20), (2.22), and a more complex 
term Uo~ depending only on the critical variables. The noncritical 
distribution width is distinguishably narrower than that of the critical 
distribution: this corresponds to the deterministic idea of rapid decay of the 
noncritical (fast) modes, which then follow adiabatically the critical (slow) 
modes. This result can be understood as a stochastic equivalent of the 
center manifold reduction. 
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The critical potential Uor has been shown to be nonanalytical in the 
general case. More specifically, we have shown that the p-order derivatives 
U (p) of the potential (p ~> 4) at the fixed point with respect to a resonant set 
of critical variables containing at least two distinct critical modes are 
singular at the bifurcation point unless three specific conditions are 
imposed on the kinetic and diffusion constants of the system. This situation 
is characteristic of degenerate bifurcations of a fixed point, which can be of 
two types. The first type consists of the bifurcations of codimension greater 
than one for a uniform system, e.g., the coalescence of two Hopf 
bifurcations. (15) The second type of degeneracy arises for a system of large 
spatial extension including diffusion processes, e.g., a Hopf bifurcation in a 
distributed system. The complex bifurcation under consideration presents 
both types of degeneracy. 

Under the three above-mentioned conditions, we have shown [see 
Eq. (2.45)] that the critical potential reduces at dominant order near 
criticality to a fourth-order polynomial with coefficients depending only on 
the real part of the deterministic normal form coefficients [Eq. (A.4)] and 
on two stochastic coefficients also associated with the fundamental 
resonances of the system at criticality. A foundamental consequence is that, 
due to intrinsic symmetry properties of the bifurcation under consideration 
and to the periodic boundary conditions, the reduced quartic potential 
presents both phase and translational invariance. We wish to emphasize 
the fact that this "normal form" of the critical potential and its symmetry 
properties are independent of the particular choice of local coordinates 
around the fixed point: in particular, a Poincar6 normal form represen- 
tation of the system in which the deterministic flow itself presents the 
above-mentioned invariance properties is not a prerequisite. 

As shown in Section 3, the quartic critical potential contains all the 
information concerning the deterministic system near criticality, the attrac- 
tors and their bifurcations following from the discussion of the extrema of 
U~r. Moreover, it can be easily shown that U,  provides a Lyapunov 
function for the attractors of the deterministic system, since it can only 
decrease along deterministic trajectories until it reaches an attractor and 
remains constant. 

Beyond the comparison with deterministic results, our essential aim is 
to bring out the additional information given by the stochastic approach. 
In this respect, the main point is that due to internal fluctuations the 
existence of a given attractor does not necessarily imply that the 
corresponding structure is macroscopically observable. When the normal 
form of a dynamical system near a bifurcation point is invariant with 
respect to a "cyclic" variable ~b, then bifurcating attractors consist of con- 
tinuous families of asymptotic states obtained by varying the initial value 
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of r Examples can be given here of phase invariance in the case of tem- 
poral oscillations (limit cycle), translational invariance in the case of spatial 
structures, and both phase and translational invariance in the case of 
spatiotemporal structures. In a system of large size, the macroscopic obser- 
vation of such a structure depends on the ability of the system to impose 
the same value of r at any point of the space. This property depends essen- 
tially on the range of the spatial correlations of the fluctuations around the 
attractor. These correlation functions are derived from the quartic critical 
potential and it is shown that no long-range order can be sustained in low- 
dimensional systems undergoing such a degenerate bifurcation. More 
specifically, we show that limit cycles and spatiotemporal structures are 
destroyed by inhomogeneous fluctuations for large systems with d=  1, 2 
and that spatial and spatiotemporal structures built on a single wave vector 
cannot be observed in a large three-dimensional system. 

The main motivation for our stochastic local expansion method 
around the reference point is to draw as far as possible a parallel with the 
deterministic normal form approach to local bifurcations, which is based 
on the reduction of the flow to a finite jet around the fixed point. 
According to deterministic analysis, different topological types of bifur- 
cation diagrams can be defined near criticality, depending on the signs of a 
finite number of coefficients derived from the normal form of the flow (in 
the present case, A, B 1, ul, Vl, 24UlV1-AB1, ~IUl "qt-01Ul .... ). Because of 
the conditions of validity of the quartic potential, some of these topological 
types are excluded from our stochastic local analysis, corresponding, not so 
surprisingly, to the most complex behaviors which can lead to chaos. 
However, we wish to emphasize that although the constraints under which 
our results are derived may seem to be very drastic, they actually corres- 
pond to a generic situation in the sense that any small deviation from the 
imposed conditions does not modify the topological structure of the bifur- 
cation diagram. Thus, we can expect our stochastic analysis to give a 
general description of the whole class of systems corresponding to the same 
topological types. 

Nevertheless, our final aim is of course to explore all the possible 
topological types of the system. In the general case when the local expan- 
sion of Ucr around the fixed point breaks down near criticality, we still 
expect that a unique, normalizable, everywhere two-times differentiable 
stationary solution of the Hamilton-Jacobi equation exists. An alternative 
approach, based on straightforward quadratic local expansions of this 
solution about the bifurcating attractors, should enable us to explore secon- 
dary bifurcations by which the limit cycle is destabilized through 
inhomogeneous fluctuations and tertiary bifurcations of the spatiotemporal 
structures leading to biperiodic spatiotemporal structures. For a system of 
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large spatial extension, both deterministic fluctuations and random fluc- 
tuations of the phase variables have been shown to play a predominant role 
in the possible destabilization of the limit cycle. For this reason, it seems 
natural to seek a systematic reduction procedure, extending the ideas of 
phase dynamics (16) to our stochastic approach; work in this direction is in 
progress. 

A P P E N D I X  

We give here the normal form of the deterministic equations describ- 
ing the evolution of the concentrations in a reaction-diffusion system of 
large size near the codimension-two bifurcation of interest (interaction of a 
Hopf bifurcation and a symmetry-breaking bifurcation). 

Considering the deterministic equations [see Eq. (2.4)] 

dxj= jcj= Hj( {xj} ) (A.1) 
dt 

we switch to the representation al defined by Eq. (2.6), in which the linear 
stability operator HjJ ' at the reference state s is diagonal. We obtain the 
following system of ordinary differential equations: 

1 l i f t  1 t l l  G i l f f [ 2 l T l 3  ~-  . . . 6l = col~rl + ~.. Hi all a~2 + ~. .,llt2t3 (A.2) 

Generalizing to quasiresonance (2.15) the theory of normal forms,/~) we 
carry out a nonlinear change of variables 

1 ll i2 1 t~ l l i2 i3  ~ ~ (A.3) 

(where P~# and Q~ lt2t3 are functions of the characteristics of the reaction- 
diffusion model) in order to eliminate in Eq. (A.2) as many nonlinearities 
as possible. The equations of evolution of the critical variables ~t0 
associated with small real part eigenvalues col0 may be decoupled from the 
evolution of noncritical variables and reduce to 

~m00 = O)rn00~m00 -- 1])6]( l~10 ~- m l  + m~) ~m~0~m 2 

-- 2Vl 6(ffn 0 + m~ + mo 2 + mo 3) ~m010 ~m20 ~m30 
_ �89  ~ + m I + q l + q2){m~0 {qll {q2I 
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~ql = (DRI ~ql - -  (Ul  -~- i u 2 ) a ( q  + q l  q_ q2 _{_ q3)  ~qll  ~q21 ~q31 

�88 + ql + i 2 ~" - m o + mo) ~qq CmlO ~m20 

- ~R*a(q + q~ + m~ + m~) ~,,~ ~..+o ~m~O (A.4) 

where every coefficient depends on the characteristics of the reaction- 
diffusion model. 

Note that the fourth-order expansion of the stochastic potential (2.45) 
depends on the real parts of the coefficients of the normal form. In 
particular, the stochastic potential UoSr s [see Eq. (2.23)] associated with a 
symmetry-breaking bifurcation ~6,v) depends on 7 and v~. The u~ appears in 
the expansion (2.30) of the stochastic potential Uc~ associated with a Hopf 
bifurcation. (m) The interaction term U~ [see Eq. (2.42)] depends on A. 

Let us give here the expressions of A and B as functions of the charac- 
teristics of the chemical model: 

[-/IA TM /IA Ii  /IAr 01/1A r l ]  AAr l~b A//"iO /1At Ir AAr 10 7 
~'~0 ~'~,k 

A = - 2  L iOo a)m~ ~ + iOo COm~ O -  iOo + M~i~  J 
[ _  a/tooagH+M~OMlI+2M~MO* 2MO:MOl 1 

B = - 2  *'- 1 ~'~ 1 iOo (Dm~(~  - -  iOo ~ M 11~176 

(A.5) 

where M~ '~" and M~ '/3"/~'' are derivatives of the first transition moments of 
the chemical process. The two possible values of fl are denoted by 0 and ~b 
when they refer to the variables am0 ~ or by 1 and i when they refer to %~. 
For example, we have 

MOI = ~,(C-lrn = mc:B ='Jc~ 1 ~b M ~ 3 ( C m  = mc)~; = O(Cq = 0)~;' = i (A.6) 

where (Cml)~ is the inverse matrix of (Ca) ~ defined by Eq. (2.8). 
We now look for solutions of Eqs. (A.4) in the form 

~m00 = R:'ei~C6mo,k + R,.e ir ' k 
(a.7) 

~ql = Roei:~ ~ql = Roe  i~~ 

The radial and phase variables then satisfy 

R = q c R  c 6 v l R 3 _ 1  2 f~o _ u l R ~ _ I  2 (A.8) 
- 7AR~Ro,  = rloR o ~BIRoR~  

dc o(r/o 2 q~), ~o 2 l 2 (A.9) = , = Oo - u2Ro - yB2Rc 

The equations of evolution of the radii are decoupled from the evolution of 
the phases. Note that Eqs. (A.9) state that, at dominant order, ~b C is con- 
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stant and ~b o is proportional to time t. System (A.8) admits four stationary 
solutions. The extrema of the stochastic potential Ucr given by TableI 
coincide with these stationary solutions. 
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